The strongest vector space topology is locally convex on separable linear subspaces
نویسندگان
چکیده
منابع مشابه
Linear Operators Whose Domain Is Locally Convex
Let F be an arbitrary topological vector space; we shall say that a subset S of F is quasi-convex if the set of continuous affine functionals on 5 separates the points of S. If X is a Banach space and T: X -* F is a continuous linear operator, then T is quasi-convex if T(U) is quasiconvex, where U is the unit ball of X. In the case when T is compact, T(U) is quasi-convex if and only if it is af...
متن کاملOn separable Banach subspaces
We show that any infinite-dimensional Banach (or more generally, Fréchet) space contains linear subspaces of arbitrarily high Borel complexity which admit separable complete norms giving rise to the inherited Borel structure. © 2007 Elsevier Inc. All rights reserved.
متن کاملHyperinvariant Subspaces for Some Operators on Locally Convex Spaces
Some results concerning hyperinvariant subspaces of some operators on locally convex spaces are considered. Denseness of a class of operators which have a hyperinvariant subspace in the algebra of locally bounded operators is proved.
متن کاملNotes on Locally Convex Topological Vector Spaces
Notes from a 1994–95 graduate course. Designed to supplement the topological vector space chapters of Rudin's Functional Analysis.
متن کاملFuzzy Topology Generated by Fuzzy Norm
In the current paper, consider the fuzzy normed linear space $(X,N)$ which is defined by Bag and Samanta. First, we construct a new fuzzy topology on this space and show that these spaces are Hausdorff locally convex fuzzy topological vector space. Some necessary and sufficient conditions are established to illustrate that the presented fuzzy topology is equivalent to two previously studied fuz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Polonici Mathematici
سال: 1997
ISSN: 0066-2216,1730-6272
DOI: 10.4064/ap-66-1-275-282